Adaptive Fraud Detection Using Benford's Law
نویسندگان
چکیده
Adaptive Benford’s Law [1] is a digital analysis technique that specifies the probabilistic distribution of digits for many commonly occurring phenomena, even for incomplete data records. We combine this digital analysis technique with a reinforcement learning technique to create a new fraud discovery approach. When applied to records of naturally occurring phenomena, our adaptive fraud detection method uses deviations from the expected Benford’s Law distributions as an indicators of anomalous behaviour that are strong indicators of fraud. Through the exploration component of our reinforcement learning method we search for the underlying attributes producing the anomalous behaviour. In a blind test of our approach, using real health and auto insurance data, our Adaptive Fraud Detection method successfully identified actual fraudsters among the
منابع مشابه
Detecting Fraud in Bankrupt Municipalities Using Benford's Law
Acknowledgements I would like to thank Professor Flynn, one of my thesis readers, for assisting me in developing and completing this project. His guidance and unrelenting advice helped make this possible. I would like to express my appreciation and gratitude to Professor Massoud, also one of my thesis readers, for introducing me to the accounting field. Thank you for guiding and supporting me t...
متن کاملDetecting Fraud in Health Insurance Data: Learning to Model Incomplete Benford's Law Distributions
Benford’s Law [1] specifies the probabilistic distribution of digits for many commonly occurring phenomena, ideally when we have complete data of the phenomena. We enhance this digital analysis technique with an unsupervised learning method to handle situations where data is incomplete. We apply this method to the detection of fraud and abuse in health insurance claims using real health insuran...
متن کاملEvaluation of Large-scale Data to Detect Irregularity in Payment for Medical Services. An Extended Use of Benford's Law.
BACKGROUND Sophisticated anti-fraud systems for the healthcare sector have been built based on several statistical methods. Although existing methods have been developed to detect fraud in the healthcare sector, these algorithms consume considerable time and cost, and lack a theoretical basis to handle large-scale data. OBJECTIVES Based on mathematical theory, this study proposes a new approa...
متن کاملAssessing Conformance with Benford’s Law: Goodness-Of-Fit Tests and Simultaneous Confidence Intervals
Benford's Law is a probability distribution for the first significant digits of numbers, for example, the first significant digits of the numbers 871 and 0.22 are 8 and 2 respectively. The law is particularly remarkable because many types of data are considered to be consistent with Benford's Law and scientists and investigators have applied it in diverse areas, for example, diagnostic tests fo...
متن کاملUsing Benford's Law to Detect Fraud in the Insurance Industry
Benford's Low is the mathematical phenomena that states that the first digits or left most digits in a list of numbers will occur with an expected logarithmic frequency. 1f'hile this method has been used in industries such as oil and gas and manufacturing to' identify fraudulent activity, it has not been applied to the health insurance industry. Since health insurance companies process a large ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006